Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage.

نویسندگان

  • R Siman
  • J C Noszek
  • C Kegerise
چکیده

Sustained stimulation of receptors for excitatory amino acids leads to both activation of the calcium-dependent cysteine protease calpain I and to the death of receptive neurons. Here, we have examined the relationship between the calpain I activation and neurodegeneration. Calpain I activation was manifested as increased levels of the major proteolytic fragments of the calpain substrate spectrin, detected and quantified by immunoblotting. Intraventricular administration of the excitatory amino acids kainate or N-methyl-D-aspartate (NMDA) produced calpain I-mediated spectrin degradation and hippocampal neuronal loss. The NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid selectively blocked NMDA- but not kainate-induced protease activation and hippocampal damage. Temporally, spectrin degradation preceded the onset of pyramidal cell degeneration monitored by silver-impregnation histochemistry. Only those doses of kainate (0.15-1 microgram) or NMDA (40-80 micrograms) sufficient to cause hippocampal damage markedly increased spectrin breakdown. Both the neuronal damage and calpain I activation induced by kainate occurred primarily in area CA3. Degeneration of hippocampal neurons evoked by colchicine was not accompanied by calpain activation, indicating that proteolysis is not stimulated simply as a secondary response to neuronal destruction. Thus, a close correspondence exists between excitatory amino acid induction of neuronal degeneration and of calpain I-mediated spectrin degradation. The results suggest that calpain I may be an intracellular mediator of excitatory amino acid action, and further, they support the hypothesis that calcium influx and calpain I activation are obligatory events in the initiation of excitatory amino acid neurotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-dependent reversal of long-term potentiation by low-frequency stimulation at the hippocampal mossy fiber-CA3 synapses.

Using mouse hippocampal slices, we studied the induction of depotentiation of long-term potentiation (LTP) at the mossy fiber synapses onto CA3 pyramidal neurons. A long train of low-frequency (1 Hz/900 pulses) stimulation (LFS) induced a long-term depression of baseline synaptic transmission or depotentiation of previously established LTP, which was reversible and was independent of NMDA recep...

متن کامل

P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP

Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...

متن کامل

Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats

Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...

متن کامل

Antioxidant, antimutagenic, tanning and calpain induction activities of methanolic extract of Tunisian plant (Moricandia arvensis)

In this study, we investigate the potential of Moricandia arvensis methanol leaf extract (MeOHL) on calpain activity, melanin biosynthesis and DNA mutagenicity. Cytotoxic effect and measurement of reactive oxygen species (ROS) induced by lucigenin in colorectal cells (BE) were also determined. In addition the chemical analysis of the extract was also studied and the chemical profile illustrates...

متن کامل

IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage.

Insulin and insulin-like growth factors I and II (IGF-I and IGF-II) have recently been shown to have biological activity in central neurons, but their normal functions and mechanisms of action in the brain are unknown. Since central neurons are particularly vulnerable to hypoglycemia that results from ischemia or other insults, we tested the hypothesis that growth factors can protect central ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 1989